
20 The Delphi Magazine Issue 68

Under Construction:
Data-Awareness And Interfaces
by Bob Swart

Five years ago (Issue 7, March
1996) I first wrote about data-

aware components in this column.
Now I want to share some new
insights on the architecture of
data-aware components. I want to
show you a more elegant way
of implementing data-awareness
using interfaces.

But first, let’s examine the way
data-aware components work
behind the scenes, and see how we
can make our own data-aware com-
ponents (both the current way,
and the proposed new way).

Data Controls
I usually call them data-aware
controls, but in Delphi, C++Builder
and Kylix you find them on the Data
Controls tab of the Component Pal-
ette. They all display the same
characteristic: a DataSource prop-
erty (to connect to a DataSource).
Most of them also feature a Data-
Field property (to connect to a
specific DataField from the Data-
Source). Some, like the DBNavigator
and DBGrid component, work on

the entire dataset that they obtain
from the DataSource, so they do not
have (or need) a DataField prop-
erty. We’ll focus on the first cate-
gory of data-aware components
today, and will now start to make
one ourselves.

Choose File | New, and select the
Component icon from the Object
Repository, which results in the
New Component dialog. Let’s make a
useful data-aware component that
doesn’t exist yet (in Delphi 5), like a
data-aware calendar (based on the
TCalendar component that can be
found on the Samples page of the
Delphi Component Palette). Select
TCalendar in the Ancestor type
combobox. The Class Name now
shows TCalendar1, but rename that
to TDMCalendar instead. For the
Palette Page I always use DrBob42,
but you should specify your own
logical choice here. Finally, I click
on the OKbutton (and not yet on the
Install button), to generate the
TDMCalendar component skeleton.

As we noticed before, a data-
aware component has a DataSource
property (of type TDataSource) and
a DataField property (of type
String), so let’s add the following

lines to the published section of the
TDMCalendar component:

property DataSource:
TDataSource
read GetDataSource
write SetDataSource;

property DataField: String
read GetDataField
write SetDataField;

Now, hit Ctrl+Shift+C to let Delphi
generate empty getter (read) and
setter (write) routines for these
two properties.

TFieldDataLink Delegation
You now have four empty methods
inside your unit, and probably
wonder where you need to get or
set the DataSource and DataField
properties. This will all be taken
care of by (or rather: is being dele-
gated to) a private field called
FFieldDataLink of type TFieldData-
Link that you need to add to the
private section of the TDMCalendar
component. The TFieldDataLink
type is defined in the DBCtrls unit,
by the way, and TDataSource is
defined in the DB unit, so add these
units to the uses clause within your

unit DMCalendar;
interface
uses
Windows, SysUtils, Classes, Controls, Forms,
Calendar, DB, DBCtrls;

type
TDMCalendar = class(TCalendar)
private
FFieldDataLink: TFieldDataLink;
function GetDataField: String;
function GetDataSource: TDataSource;
procedure SetDataField(const Value: String);
procedure SetDataSource(const Value: TDataSource);

protected
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property DataSource: TDataSource read GetDataSource
write SetDataSource;

property DataField: String read GetDataField
write SetDataField;

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents('DrBob42', [TDMCalendar]);

end;
constructor TDMCalendar.Create(AOwner: TComponent);

begin
inherited;
FFieldDataLink := TFieldDataLink.Create;

end;
destructor TDMCalendar.Destroy;
begin
FFieldDataLink.Free;
FFieldDataLink := nil;
inherited

end;
function TDMCalendar.GetDataField: String;
begin
Result := FFieldDataLink.FieldName

end;
function TDMCalendar.GetDataSource: TDataSource;
begin
Result := FFieldDataLink.DataSource

end;
procedure TDMCalendar.SetDataField(const Value: String);
begin
FFieldDataLink.FieldName := Value

end;
procedure TDMCalendar.SetDataSource(const Value:
TDataSource);

begin
FFieldDataLink.DataSource := Value

end;
end.

➤ Listing 1: TDMCalendar first
implementation.

April 2001 The Delphi Magazine 21

unit’s interface section before you
compile your new component.

The FFieldDataLink private field
is truly used behind the scenes,
and must be created when your
component is created. The best
place to do so is the constructor
(and yes, you thus also need to free
it inside the destructor). Once the
FFieldDataLink is available, it’s
easy to connect the DataSource and
DataField properties to it, since
FDataFieldLink has a DataSource
property and a FieldName property
(which goes to DataField). This
should result in a first implementa-
tion of TDMCalendar as can be seen
in Listing 1.

Note that we could have used
any component here: the example
merely shows how to implement
data-awareness.

Data-Aware Calendar
To continue with the calendar
example, we should realise that
apart from the connection to the
DataSource and DataField, we have
not written any code to actually

connect to the specific field in the
dataset. How can we make sure the
calendar shows the date as speci-
fied by the date field in the dataset?
And how do we make sure that the
date field in the dataset is updated
correctly when we change the day
on the calendar? The first question
will be answered by using the
OnDataChange event of the FField-
DataLink (which will be fired when
the data in the dataset changes, for
example when the table is opened,
closed or the user navigates
through the records in the
dataset); the second question is
answered by responding to a
change in the calendar, and modi-
fying the value in the dataset, as
we’ll see in a moment.

Let’s start with the FField-
DataLink.OnDataChange event. We
need to write and connect our own
event handler, which needs to
obtain a date value from the con-
nected field. Fortunately, the inter-
nal FFieldDataLink has a property
named Field that, if assigned,
points to the actual TDateField we

need to work with. The code to
obtain the date and assign it to the
Calendar itself consists of only
three lines of code:

if Assigned(

FFieldDataLink.Field) then

if (FFieldDataLink.Field IS

TDateField) then

CalendarDate :=

FFieldDataLink.Field.AsDateTime;

Connecting the method DataChange
that contains these lines to the
OnDataChange event handler of the
FFieldDataLink sub-component
can be seen in Listing 2.

Two-Way Connection
Apart from the visual calendar
showing a new date once the data
in the table has changed, we
should also make sure the field is
changed when the user clicks on
the calendar to change the date.

unit DMCalendar;
interface
uses
Windows, SysUtils, Classes, Controls, Forms,
Calendar, DB, DBCtrls;

type
TDMCalendar = class(TCalendar)
private
FFieldDataLink: TFieldDataLink;
function GetDataField: String;
function GetDataSource: TDataSource;
procedure SetDataField(const Value: String);
procedure SetDataSource(const Value: TDataSource);

protected
// date changed in table
procedure DataChange(Sender: TObject);
// date changed by user in calendar
procedure Change; override;
// change data in table
procedure UpdateData(Sender: TObject);
procedure CmExit(var Message: TCmExit); message CM_Exit;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property DataSource: TDataSource read GetDataSource
write SetDataSource;

property DataField: String read GetDataField
write SetDataField;

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents('DrBob42', [TDMCalendar]);

end;
constructor TDMCalendar.Create(AOwner: TComponent);
begin
inherited;
FFieldDataLink := TFieldDataLink.Create;
FFieldDataLink.OnDataChange := DataChange;
FFieldDataLink.OnUpdateData := UpdateData

end;
destructor TDMCalendar.Destroy;
begin
FFieldDataLink.Free;
FFieldDataLink := nil;
inherited

end;

function TDMCalendar.GetDataField: String;
begin
Result := FFieldDataLink.FieldName

end;
function TDMCalendar.GetDataSource: TDataSource;
begin
Result := FFieldDataLink.DataSource

end;
procedure TDMCalendar.SetDataField(const Value: String);
begin
FFieldDataLink.FieldName := Value

end;
procedure TDMCalendar.SetDataSource(const Value:
TDataSource);

begin
FFieldDataLink.DataSource := Value

end;
procedure TDMCalendar.DataChange(Sender: TObject);
begin
if Assigned(FFieldDataLink.Field) then
if (FFieldDataLink.Field IS TDateField) or
(FFieldDataLink.Field IS TDateTimeField) then
CalendarDate := FFieldDataLink.Field.AsDateTime

end;
procedure TDMCalendar.Change;
begin
FFieldDataLink.Modified;
inherited

end;
procedure TDMCalendar.UpdateData(Sender: TObject);
begin
if Assigned(FFieldDataLink.Field) then
if (FFieldDataLink.Field IS TDateField) or
(FFieldDataLink.Field IS TDateTimeField) then
FFieldDataLink.Field.AsDateTime := CalendarDate

end;
procedure TDMCalendar.CmExit(var Message: TCmExit);
begin
try
FFieldDataLink.UpdateRecord

except
SetFocus;
raise // re-raise exception

end;
inherited

end;
end.

➤ Listing 2:
TDMCalendar non-interface
implementation.

22 The Delphi Magazine Issue 68

This can be done by using the
OnChange event of the original
TCalendar component. Or, better,
by overriding the protected Change
method, which is responsible for
calling OnChange in the first place.

The Change method should make
a call to the Modified method of the
FFieldDataLink sub-component.
This, in its turn, will trigger the
OnUpdateData event handler to be
fired. And that, in its turn, is the
place where we can assign the
CalendarDate value to the Field.

Why all this trouble to call the
OnUpdateData event handler to do
the work? Why not update the
Field inside the Change method?
There is a good reason: inside the
OnUpdateData event handler, the
sibling OnDataChange event handler
is not fired (the one that would
indicate a change of the data in the
table, which indeed just happened,
even if we ourselves were responsi-
ble for changing the data).

The implementation for the new
OnUpdateData event handler looks a
lot like the code inside the
OnDataChange event, but assigns the
date from CalendarDate to the Field
(instead of the other way around as
we did earlier):

if Assigned(

FFieldDataLink.Field) then

if (FFieldDataLink.Field IS

TDateField) then

FFieldDataLink.Field.AsDateTime

:= CalendarDate

The complete implementation can
be seen in Listing 2 again.

It’s now time to install this com-
ponent in a package, for example
the Delphi User Components in
dclusr50.dpk (Figure 1). This will
result in the TCalendar component

itself being unavailable (the Calen-
dar unit is now contained in both
the Sample package dclsmp50.bpl
and the Borland User Components
dclusr50.bpl). To fix this, you
could add the TCalendar compo-
nent to the Delphi User Compo-
nents as well. Otherwise, you will
have a new data-aware calendar,
but no original calendar anymore.
But that particular issue is not the
topic of this column.

Data-Aware Ancestors
The main problem with data-aware
controls within Delphi is that they
do not share a common ancestor.
In fact, it is really hard to determine
whether or not a certain control (ie
component instance) is a data-
aware control. Looking for the
presence of the DataSource and
DataField properties is about the
only way you can know for certain.

Wouldn’t it be a good idea to put
the whole data-awareness inside
an interface, let’s call it IDataAware,
and then make sure each data-
aware component has imple-
mented this interface (in a way that
it ends up being data-aware in
Delphi indeed)? Now that we’ve
mentioned it, yes, let’s go ahead
and define an IDataAware interface,
but start with a short introduction
to interfaces first.

Introducing Interfaces
Interfaces are the cornerstone of
COM (and, for some, also CORBA)
development with Delphi. How-
ever, in this article we will not
touch COM or CORBA at all.
Instead, we’ll focus on interfaces as
an Object Oriented design princi-
ple, and an extension of the
ObjectPascal class architecture.
An interface is a design specifica-
tion, literally an interface, but with-
out an implementation. Only when
we ‘add’ an interface to a class

definition do we
need to provide an
implementation. In
those cases, the
class is said to liter-
ally ‘implement’ an
interface.

Unlike class
names, which start
with a T (for type),

➤ Figure 1: Install TDMCalendar
in Delphi User Components.

interface names start with an I (for
interface). The keyword used to
define them is interface (versus
class for classes), and the base
class is IUnknown (versus TObject
for classes). Apart from those
things, the biggest difference (I
can’t state this enough) is that an
interface contains no implementa-
tion: it’s a definition of something
that will be implemented later.

IHello
As a small example, let’s consider
the following interface definition:

type
IHello = interface
procedure HelloWorld;

end;

The IHello interface can be used to
specify that a class should imple-
ment the HelloWorld method. So
we can use a TEdit or TCalendar
component, and specify that it
should implement the IHello inter-
face as follows:

type
TEditHello =
class(TEdit, IHello)
procedure HelloWorld;

end;

What’s missing from this snippet is
the implementation of TEdit.
Hello.HelloWorld. This wasn’t
needed when we defined the
IHello interface, since an interface
doesn’t require an implementa-
tion, but now we need to imple-
ment HelloWorld for TEditHello.

Interface Instances
The next step is to create an
instance of interfaces and of
classes that implement interfaces.
You can either create an instance
of TEditHello (which includes the
interface IHello) or only create an
interface IHello:

var
EditHello: TEditHello;

begin
EditHello :=
TEditHello.Create;

EditHello.HelloWorld;
EditHello.Free

end;

24 The Delphi Magazine Issue 68

Note that you must free the compo-
nent instance, of course, to avoid a
memory leak.

Interface Only
Using interfaces only, we can write
the following code, in which we
still call the create constructor of
the TEditHello class, but we only
extract an interface (IHello) and as
a consequence, we can only use
the interface methods:

var
EditHello: IHello;

begin
EditHello :=
TEditHello.Create;

EditHello.HelloWorld;
// next line does not compile
EditHello.Free

end;

As you can see, an interface only
sees the interface method (even
when it’s extracted from a full
class: you’ll get a compiler error
when you try to access Edit-
Hello.Text, for example). Apart
from that, the interface doesn’t
need to be freed explicitly (the call
to free results in another compiler
error), because reference counting
makes sure interfaces are cleaned
up whenever they get out of scope.

GetInterface
Sometimes we need to know if an
object (a class instance) imple-
ments a certain interface. We can
do this using the GetInterface func-
tion, which is defined at the
TObject level, and returns true if
the specified interface is imple-
mented by the class instance at
hand. The second argument (Obj)

will obtain the reference to the
interface, if it is implemented by
the class:

if EditHello.QueryInterface(
IHello, Obj) = S_OK then ...

The only thing we need to add to
our interfaces for GetInterface
(and the underlying Query
Interface) to work, is a Globally
Unique Identifier (a GUID) so
GetInterface can actually look
them up. To define a GUID, just go
to the first line of the interface
definition and press Ctrl+Shift+G
to insert a GUID, then you get a
unique one:

type
IHello = interface
[‘{B20CF5C0-4042-11D4-B84D-
444553540000}’]

As soon as an interface has a GUID,
it can be used by the GetInterface
method.

IDataAware Interface
In the first part of this article, I’ve
shown you how to implement
data-aware components or, rather,
what properties (and implementa-
tion) to add to a class to make it
data-aware. And once you have
reached the stage where a certain
functionality can be described as a
signature or pattern, you’re ready
to abstract from it and define an
interface to contain this signature.
In our case, the IDataAware inter-
face will enable ‘normal’ controls
to implement the ‘data-aware’
interface. This is not the way it’s
currently done in Delphi, although
I believe it could have been the way

to add data-awareness to the VCL
in the first place.

As I’ve mentioned earlier in this
article, the main problem with
data-aware controls within Delphi
is that they do not share a common
ancestor. In fact, it is really hard to
determine whether or not a certain
control (ie component instance) is
a data-aware control. Looking for
the presence of the DataSource and
DataField properties is about
the only way you can know for
certain. If, on the other hand, data-
awareness was defined by imple-
menting the IDataAware interface,
then as a consequence of using
this IDataAware interface, we’d
make the process of classifying a
component as data-aware very
simple: just use GetInterface to
see if the component indeed imple-
ments the IDataAware interface and
you’re done. No question about it.
Very elegant (at least I think so).

IDataAware
So, in this case, we need to store
the fact that we need the Data-
Source and DataField properties
inside the interface IDataAware,
turning the declaration of a
data-aware component into the
code shown in Listing 3.

And since we already know that
we need four additional methods
(get and set DataSource plus get
and set DataField) we can add
these to the IDataAware interface,
to enforce the fact that we need to
add and implement them to our
newly data-aware class. So, using
reverse engineering, we can con-
clude that our IDataAware interface
must be defined at least as in
Listing 4.

Now that this works, we can
ask every component instance
whether or not it supports the
IDataAware interface. And, if so,
then it’s a data-aware component.
That’s a good reason for using
interfaces, right?

Using IDataAware
It’s funny that the actual imple-
mentation of the TDMCalendar does
not change much (apart from
the IDataAware section within the
class definition), so all it takes is
a little compiler option that I

type
TDMCalendar = class(TCalendar, IDataAware)
published
property DataSource: TDataSource;
property DataField: String;

end;

type
IDataAware = interface
['{FFC47B41-0D51-11D5-8131-00104BF89DAD}']
function GetDataSource: TDataSource;
procedure SetDataSource(Value: TDataSource);
function GetDataField: string;
procedure SetDataField(const Value: string);
property DataSource: TDataSource read GetDataSource write SetDataSource;
property DataField: String read GetDataField write SetDataField;

end;

➤ Above: Listing 3 ➤ Below: Listing 4

26 The Delphi Magazine Issue 68

named INTERFACE to conditionally
compile the unit in Listing 5 with or
without IDataAware interface
support. We can now install the
IDataAware version of TDMCalendar
in the Delphi User Components
package, and use it just like any
other data-aware component (but
one that connects to a date field).

Testing For IDataAware
For a given component, we can
now call the GetInterface function
(defined at the object level), which
returns true if the interface is
implemented, and then passes the
interface itself in the second
argument. The code in Listing 6
checks the component DMCalendar1
to see if it implements the IData-
Aware interface and, if so, puts the
interface in the DW argument. If it
succeeds, we use the DataSource
property from the interface to get

to the DataSet and the ClassName of
the DataSet, see Listing 6.

Since our DMCalendar1 compo-
nent indeed implements the IData-
Aware interface, the code in Listing
6 shows TTable (in case you con-
nected it to a TTable component,
which I just did). Of course, you
can use this technique to walk
through a long list of components
and for each one determine if it
indeed implements the IDataAware
interface, and if so use the inter-
face (and especially the DataSource
and DataField properties, since
these are the only ones that
matter).

The example application (see
Figure 2) on disk contains an appli-
cation that connects the
TDMCalendar component to one of
the date fields of the orders table,
and also uses a button with the
OnClick event implemented just

{$DEFINE INTERFACE}
unit DMCalendar;
interface
uses
Windows, SysUtils, Classes, Controls, Forms,
Calendar, DB, DBCtrls;

{$IFDEF INTERFACE}
type
IDataAware = interface
['{FFC47B41-0D51-11D5-8131-00104BF89DAD}']
function GetDataSource: TDataSource;
procedure SetDataSource(const Value: TDataSource);
function GetDataField: string;
procedure SetDataField(const Value: string);
property DataSource: TDataSource read GetDataSource

write SetDataSource;
property DataField: String read GetDataField
write SetDataField;

end;
{$ENDIF}
type
TDMCalendar = class(TCalendar {$IFDEF INTERFACE},
IDataAware{$ENDIF})

private
FFieldDataLink: TFieldDataLink;
function GetDataField: String;
function GetDataSource: TDataSource;
procedure SetDataField(const Value: String);
procedure SetDataSource(const Value: TDataSource);

protected
// date changed in table
procedure DataChange(Sender: TObject);
// date changed by user in calendar
procedure Change; override;
// change data in table
procedure UpdateData(Sender: TObject);
procedure CmExit(var Message: TCmExit); message CM_Exit;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property DataSource: TDataSource read GetDataSource
write SetDataSource;

property DataField: String read GetDataField
write SetDataField;

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents('DrBob42', [TDMCalendar]);

end;
constructor TDMCalendar.Create(AOwner: TComponent);
begin
inherited;
FFieldDataLink :=
TFieldDataLink.Create;
FFieldDataLink.OnDataChange := DataChange;
FFieldDataLink.OnUpdateData := UpdateData

end;
destructor TDMCalendar.Destroy;
begin
FFieldDataLink.Free;
FFieldDataLink := nil;
inherited

end;
function TDMCalendar.GetDataField: String;
begin
Result := FFieldDataLink.FieldName

end;
function TDMCalendar.GetDataSource: TDataSource;
begin
Result := FFieldDataLink.DataSource

end;
procedure TDMCalendar.SetDataField(const Value: String);
begin
FFieldDataLink.FieldName := Value

end;
procedure TDMCalendar.SetDataSource(const Value:
TDataSource);

begin
FFieldDataLink.DataSource := Value

end;
procedure TDMCalendar.DataChange(Sender: TObject);
begin
if Assigned(FFieldDataLink.Field) then
if (FFieldDataLink.Field IS TDateField) or
(FFieldDataLink.Field IS TDateTimeField) then
CalendarDate := FFieldDataLink.Field.AsDateTime

end;
procedure TDMCalendar.Change;
begin
FFieldDataLink.Modified;
inherited

end;
procedure TDMCalendar.UpdateData(Sender: TObject);
begin
if Assigned(FFieldDataLink.Field) then
if (FFieldDataLink.Field IS TDateField) or
(FFieldDataLink.Field IS TDateTimeField) then
FFieldDataLink.Field.AsDateTime := CalendarDate

end;
procedure TDMCalendar.CmExit(var Message: TCmExit);
begin
try
FFieldDataLink.UpdateRecord

except
SetFocus;
raise // re-raise exception

end;
inherited

end;
end.

like the source snippet in Listing 6
(showing the type of the table that
connects to the orders.db). The
TDBEdit shows the date field in text
format, while the TDMCalendar com-
ponent shows the date on the
calendar itself.

Next Time
This month we have spent a lot of
time exploring data-aware compo-
nents. Next month I aim to con-
tinue with a somewhat related
topic: dbExpress, the new
cross-platform data access layer
which is available in Kylix for Linux
and will be made available in the
next version of Delphi for Windows
as well.

We will see how dbExpress
works, what the relationship with

➤ Listing 5: TDMCalendar
interface implementation.

April 2001 The Delphi Magazine 27

MIDAS is and, last but not least, see how we can migrate
our existing database code to dbExpress. As a final
bonus, I will show what is needed to make the
TDMCalendar component we developed this month work
in Kylix.

All this and more in the next issue, so stay tuned...

Bob Swart (aka Dr.Bob, www.drbob42.com) is an IT
Consultant for the Kylix/Delphi OplossingsCentrum
(KDOC.nl) and a freelance technical author.

procedure TForm1.Button1Click(Sender: TObject);
var
DW: IDataAware;

begin
if DMCalendar1.GetInterface(IDataAware, DW) then
ShowMessage(DW.DataSource.DataSet.ClassName)

else
ShowMessage('no data-aware component');

end;

➤ Figure 2

➤ Listing 6

	Data Controls
	TFieldDataLink Delegation
	Data-Aware Calendar
	Two-Way Connection
	Data-Aware Ancestors
	Introducing Interfaces
	IHello
	Interface Instances
	Interface Only
	GetInterface
	IDataAware Interface
	IDataAware
	Using IDataAware
	Testing For IDataAware
	Next Time

